
J Glob Optim (2009) 45:281–296
DOI 10.1007/s10898-008-9374-y

On the computation of C∗ certificates

Florian Jarre · Katrin Schmallowsky

Received: 4 May 2008 / Accepted: 24 October 2008 / Published online: 12 November 2008
© Springer Science+Business Media, LLC. 2008

Abstract The cone of completely positive matrices C∗ is the convex hull of all symmetric
rank-1-matrices xxT with nonnegative entries. While there exist simple certificates proving
that a given matrix B ∈ C∗ is completely positive it is a rather difficult problem to find such
a certificate. We examine a simple algorithm which—for a given input B—either determines
a certificate proving that B ∈ C∗ or converges to a matrix S̄ in C∗ which in some sense is
“close” to B. Numerical experiments on matrices B of dimension up to 200 conclude the
presentation.

Keywords Completely positive matrices

1 Introduction

The concept of completely positive matrices has been introduced more than 40 years ago, see
[8,10]. The interest in the cone C∗ of completely positive matrices and its dual cone C of
copositive matrices has recently gained new momentum in the context of combinatorial and
global optimization problems. In [3], Bomze et al. use linear programs over the completely
positive cone to approximate solutions of “standard quadratic optimization problems”—
a class of problems that is NP-hard. More recently, de Klerk and Pasechnik [6] pointed
out that standard quadratic optimization problems can be reformulated as linear optimization
problems over the cone of copositive matrices—presenting a simple equivalent reformulation,
not just a relaxation. This result was generalized by Burer [5] to binary and continuous
nonconvex quadratic programs.

A recent summary of theoretical properties of the cones C∗ and C can be found in [2],
see also [7]. Checking copositivity of a given matrix is co-NP-complete, (see e.g. [11]), and
likewise the problem of determining complete positivity of a matrix B is difficult. Berman

F. Jarre (B) · K. Schmallowsky
Mathematisches Institut, University of Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
e-mail: jarre@opt.uni-duesseldorf.de

123

282 J Glob Optim (2009) 45:281–296

and Rothblum [1] establish a finite but highly exponential algorithm for this problem1, but
there is also no simple heuristic to date to approach the problem of determining complete
positivity of a matrix B of moderate dimension. (In particular, the Cholesky factor and the
symmetric square root typically have negative entries, and thus do not render the desired
nonnegative factorization.)

This work aims at providing a practical tool for generating a certificate of complete
positivity of a given matrix B—or to compute such a certificate for a “nearby” completely
positive matrix. To this end the quadratic factorization heuristic of [4] is modified. The main
contributions of the present paper are the introduction of a regularization step, the discussion
of its implementation, and finally, some encouraging numerical examples. The numerical
examples are based on the recent “augmented primal-dual” (apd) method in [9], exploiting
the structure of the large scale sub-problems by a first-order method for conic optimization that
quickly generates approximate solutions but that is less suitable for high accuracy solutions.

1.1 The cp-rank

By IR+ we denote the set of nonnegative numbers, IR+ = {t ∈ IR | t ≥ 0}. The inequality
X ≥ 0 is used to indicate that the matrix X only has nonnegative entries; such X is called
nonnegative. By B � 0 we indicate that the symmetric matrix B is positive semidefinite, and
write Sn+ := {S = ST ∈ IRn×n | S � 0}. By C∗ we denote the cone of completely positive
matrices, i.e. the convex hull of all xxT with x ∈ IRn+. (In this paper the dimension of the
matrices in C∗ will always be denoted by n.) By definition, for any B ∈ C∗ there exists a
natural number p and a n × p-matrix X ≥ 0 such that B = X X T .

For a given matrix B � 0 the algorithm of the present paper aims at generating a matrix
X ≥ 0 such that B = X X T holds true. If the algorithm succeeds then the matrix X provides
a certificate for the statement B ∈ C∗. The dimension p of the n × p matrix X is discussed
next. Evidently, when B ∈ C∗ ⊂ Sn+, the Cholesky factor L ∈ IRn×p of B = L LT can be
computed with p ≤ n. (p < n when B has zero eigenvalues.) On the other hand, even when
B ∈ C∗, the matrix L typically is not nonnegative, and, as discussed next, the choice p ≤ n
is not suitable in general.

Given a matrix B ∈ C∗ the minimal number p for which there is an n × p-matrix X ≥ 0
such that B = X X T is called the cp-rank of B, see e.g. [2].

Let E be the l× l all-ones matrix and I the l× l identity matrix. Then, it is straightforward
to verify that

Ŝ :=
(

l I E
E l I

)

has cp-rank l2. Thus, for even numbers n there exist n×n-matrices B ∈ C∗with cp-rank n2/4.
In fact, also matrices nearby Ŝ have a large cp-rank: Let Uε(Ŝ) := {S = ST | ‖S− Ŝ‖F ≤ ε}.
Then, for sufficiently small ε > 0, all matrices in C∗ ∩ Uε(Ŝ) have a cp-rank of at least l2.
As is intuitively clear and confirmed by preliminary numerical experiments in Sect. 4.3, it is
difficult to generate a C∗-certificate for such matrices with high cp-rank.

When n is not even, there also exist matrices with cp-rank ≥ 	n2/4
. On the other hand,
by Caratheodory’s theorem, the cp-rank of a matrix B ∈ C∗ always satisfies p ≤ n(n+1)/2.

1 To our knowledge, NP-completeness of this problem has not yet been firmly established. The authors
believe that it is possible to generate an approximate separation oracle for C∗ given an oracle that determines
whether B ∈ C∗ or not. Based on such a separation oracle, the solutions of linear optimization problems over
C∗ can be approximated in polynomial time, and such approximations are NP-complete. A careful analysis
of this approach is beyond the scope of this paper.

123

J Glob Optim (2009) 45:281–296 283

Remark 1.1 For 1 ≤ p < 	n2/4
 the set C∗p := {X X T | X ∈ IRn×p, X ≥ 0} of matrices
with cp-rank ≤ p is not convex.

Proof The proof is a trivial consequence of the observation that there exist matrices with
cp-rank > p. Let S be one such matrix, then S is a convex combination of positive rank-1-
matrices each of which is contained in C∗p . ��

This simple observation has implications on the selection of p in Algorithm 2.1 below.

1.2 Further notation

We use the following common notation: The scalar product of two matrices X, X̂ ∈ IRn×p

is denoted by 〈X, X̂〉 = (X T X̂) = ∑n
i=1

∑p
j=1 Xi, j X̂i, j ; it induces the Frobenius norm,

‖X‖2F = 〈X, X〉. By x := vec (X) ∈ IRnp we denote the vector obtained by stacking the
columns of X on top of each other, and by X := mat(x) ∈ IRn×p we denote the inverse
operation. The dimension of x = vec (X) is uniquely determined by the dimension of X
but the converse is not true; in this paper the dimension of mat(x) will always be clear from
the context. Likewise, tuples of matrices such as (X, S) are represented by a single vector
z = vec ((X, S)) with the inverse operator (X, S) = mat(z). By E we always denote the
matrix of all ones, I the identity matrix, and e the vector of all ones. The dimensions will
always be evident from the context.

1.3 Outline

Section 2 presents a linearization technique to approach a given matrix B from within C∗.
Motivated by the properties of this algorithm a normalization of a matrix B � 0 and the
computation of a “central” starting point in C∗ is discussed in Sect. 3. Even with a suitable
starting point the approach of Sect. 2 may stagnate. Section 4 presents a heuristic (cal-
led “regularization”) to recover from stagnation. Preliminary numerical experiments for the
approach with and without regularization are listed in Sects. 2.6 and 4.3. As we are not aware
of other approaches for solving this problem for matrices of moderate dimensions we cannot
present comparisons with existing approaches.

2 A Lyapunov type second-order cone algorithm

Given a symmetric matrix B ∈ IRn×n we wish to compute a matrix S ∈ C∗ that is in some
sense “close” to B. In Sect. 3 we will outline how we can assume without loss of generality
that the diagonal of B is all ones and that an initial approximation X = X0 ≥ 0, X ∈ IRn×p is
given such that X X T ≈ B and X X T is in the interior of C∗. (The approximation X X T ≈ B
may be poor.)

2.1 Motivation

The quadratic factorization heuristic of [4] can be adapted to the problem of generating a
certificate of complete positivity: If B is in C∗, then there exists a matrix �X∗ such that

(X +�X∗)(X +�X∗)T = B (1)

123

284 J Glob Optim (2009) 45:281–296

and X + �X∗ ≥ 0. Neglecting the second-order term �X∗(�X∗)T in (1) we obtain the
linearized equation yielding an approximation �X for �X∗:

X�X T +�X X T = B − X X T . (2)

For a given B ∈ C∗ the set of �X∗ satisfying (1) contains more than one element. The fact
that the linearization error in (2) depends on ‖�X‖F suggests to determine an approximation
�X for �X∗ based on the linearized problem

minimize ‖�X‖F | X�X T +�X X T = R, X +�X ≥ 0, (3)

where R = B − X X T . When X > 0 has full rank the Lyapunov equation (2) has a solution
�X , and problem (3) has a solution for small ‖R‖.2 Problem (3) is the basis for an iterative
process with repeated updates of the form X �→ X + α�X with α ∈ (0, 1].

Problem (3) is a second-order cone program (SOC problem) with np variables and n(n+
1)/2 equality constraints. For small size problems, the subproblems (3) can be solved by
interior-point approaches. The linear operator defining the equality constraints is not given
by a matrix and its explicit representation by a matrix (mapping mat(�X) to mat(R) induces
large storage requirements. Thus, interior point methods such as SeDuMi [14] prove to be
less suitable for this type of problem when the dimension of �X is moderate or large, say
n · p ≥ 1000, see Sect. 2.6. To be able to handle problems of the form (3) with a large number
of variables and constraints, a specialized approach is discussed next that does not require a
specific representation of the equality constraints.

2.2 Reformulation of the second-order cone program

The augmented primal dual (apd) method of [9,13] is applied to conic programs in a certain
standard form due to Nesterov and Nemirovskii [12],

(P) minimize 〈c, x〉 s.t. x ∈ K ∩ (L+ b),

and

(D) minimize 〈b, s〉 s.t. s ∈ K D ∩ (L⊥ + c),

where K is a closed convex cone in a finite dimensional Euclidean space, and L is a linear
subspace. The apd method uses projections onto the affine subset (L + b) × (L⊥ + c) and
projections onto the primal-dual cone. It is accelerated by the use of a regularization term
that exploits the complementarity condition and a limited memory BFGS approach.

We illustrate how problem (3) can be reformulated to the form (P). (3) is equivalent to
the problem

minimize x0 | x0 ≥ ‖x1‖2, x2 ≥ 0, A(X1) = R, −X1 + X2 = X, (4)

where X1 := �X , x1 := vec(X1), X2 := X + �X , x2 := vec(X2), and A(�X) :=
X�X T +�X X T depends on the current iterate X . Recall that X is an n × p-matrix where

2 Indeed, when X has full rank it has an n × n square submatrix of full rank. Setting the entries of �X to
zero that are not multiplied with this full rank submatrix, we assume, without loss of generality, that X and
�X are square matrices. If X = U�V T is the singular value decomposition of X then (2) can be rewritten
equivalently as �V T �X T U +U T �X V � = U T RU . Denote the new unknown by˜�X := U T �X V . Then,
for symmetric R, this equation can easily be solved for˜�X (since � is positive definite and diagonal). With
�X := U˜�X V T this proves solvability of (2). As the solution �X obtained in this way is continuous (linear)
in R, it satisfies X +�X > 0 when ‖R‖ is sufficiently small.

123

J Glob Optim (2009) 45:281–296 285

p is some upper bound for the cp-rank of B. With the above notations we may write problem
(4) in the form (P) as

minimize x0 | x = (x0, x1, x2)
T ∈ K ∩ (L+ R̄). (5)

Here, K is the cone K = Qnp+1 × R
np
+ with

Qnp+1 := {x := (x0; x1) ∈ R× R
np | x0 ≥ ‖x1‖2}

being the second-order cone of dimension np + 1. The linear set L in (5) is given by L :=
{x | Âx = 0}, where

Âx =
[

0 A 0
0 −I I

] ⎡
⎣ x0

x1

x2

⎤
⎦ .

Here, A represents the linear operator A such that Ax1 = vec(A(X1)) for x1 = vec(X1).
The linear equations of problem (5) can be written as

Âx =
[

vec(R)

vec(X)

]
=: r̂ =: Âr̄

for some suitable vector r̄ . This defines the element R̄ = mat (r̄) ∈ R×R
n×p×R

n×p in (5).

2.3 Solution of the SOC problem

As the correction X1=�X is subject to a linearization error (resulting from (2)), the sub-
problems (5) are not solved up to full precision in the implementation in Sect. 2.6. Instead,
these subproblems are solved iteratively, and when the accuracy obtained for the subproblem
is of the same magnitude as the linearization error, the algorithm for solving the subproblem
is stopped.

Since the projection of a given iterate onto the set K is trivial, the main computational
effort in the apd-approach for solving (5) is the repeated computation of the projection of
the current iterate onto the linear set L. As detailed below, this projection is computationally
cheap as well. Moreover, as the required accuracy of the approximate solution of (5) is low,
the apd-method in [9,13] seems to be very well suited for solving the subproblems (5).

The projection of a point x onto L is given by

�L(x) = x − ÂT (Â ÂT)−1 Âx .

Multiplications by Â and ÂT are cheap. The only critical part in the computation of this
projection is the solution of a linear equation of the form

Â ÂT g = h (6)

for a given right hand side h = (h1, h2)
T ∈ R

n2+np . Equation 6 is given by
[

AAT −A
−AT 2I

] [
g1

g2

]
=

[
h1

h2

]
(7)

and its solution is obtained from

AAT g1 = 2h1 + Ah2 =: ĥ.

123

286 J Glob Optim (2009) 45:281–296

(Trivially, g2 = 1
2 (h2 + AT g1).) Writing this equation in operator notation (with n × n

matrices G1 := mat (g1) and Ĥ := mat (ĥ)) leads to

AA∗(G1) = Ĥ ,

which is precisely the following Lyapunov equation

X X T GT
1 + G1 X X T = Ĥ . (8)

Below, we discuss the solution of the above Lyapunov equation for the case that X has full
row rank: To this end let

X X T = U�U T

be the eigenvalue decomposition of X X T , i.e. U ∈ IRn×n is an orthogonal matrix, and � is
an n × n positive definite diagonal matrix.
Denoting G̃1 := U T G1U and H̃ := U T ĤU , Eq. 8 is equivalent to

�G̃1
T + G̃1� = H̃ . (9)

The solution of this system is given by G̃1i, j = H̃/(�i i +� j j) for 1 ≤ i, j ≤ n. This yields
the solution G1 = U G̃1U T of (8).

2.4 Overall algorithm

Now, we summarize an algorithm based on (5):

Algorithm 2.1 [Lyapunov type SOC algorithm]

1. Input: A matrix X0 ≥ 0 of full row rank and a matrix B = BT .
Set k := 0, S0 := P0 := X0(X0)T .

2. Set R̂k := 1
2 (B + Pk)− Sk .

3. Solve problem (5) for X = Xk and determine a step size αk ∈ (0, 1] such that ‖(Xk +
αk�X)(Xk + αk�X)T − B‖ < ‖Sk − B‖.

4. Set Xk+1 := Xk + αk�Xk , Sk+1 := Xk+1(Xk+1)T , and compute the projection Pk+1

of Sk+1 onto the straight line connecting S0 and B.
5. Set k = k + 1 and go to Step 2.

Remarks

• If problem (5) (i.e. problem (3)) has a feasible solution �X then,

‖(Xk + α�X)(Xk + α�X)T − B‖
= ‖(1− α)(Sk − B)+ α2�X�X T ‖ < ‖Sk − B‖

for small α > 0. By using an exact line search in Step 3, the distance of Sk+1 to B is
strictly less than the distance of Sk to B.

• As pointed out, for small ‖R‖, problem (3) has a solution when X > 0 has full rank.
In this case, X X T is in the interior of C∗. When X X T is close to the boundary of C∗,
the Eq. 2 may not have a solution of small norm ‖�X‖. Algorithm 2.1 therefore aims at
keeping the iterates Sk “central” in some form. In Sect. 3 the computation of a starting

123

J Glob Optim (2009) 45:281–296 287

point S0 in the “center”3 of C∗ will be addressed. When S0 is a “center” of C∗ and
B ∈ C∗, then the segment [S0, B) can be viewed as a “central path” in the interior of C∗
leading to B. Due to the linearization error, the iterates deviate from this “central path”.
The construction of Pk+1 on the line segment [S0, B) may be regarded as a centering
component. By choosing the new target as a convex combination of B and Pk in Step 2,
the deviation of the iterates Sk from the line segment [S0, B) can be controlled.

• While the condition “X > 0 has full rank and ‖R‖ is small” is sufficient to guarantee
the existence of a solution of (3), this condition is not guaranteed in the course of the
algorithm. (Computing an upper bound for ‖R‖ that guarantees the existence of a solution
would be very expensive, for example.) Our attempts to establish global convergence for
sufficiently short steps failed; the algorithm is therefore intended merely as a heuristic
and does not enforce the condition “X > 0 of full rank” either.

• As the problem under consideration is rather difficult, it is unlikely that the simple Algo-
rithm 2.1 will generate a solution for all problem instances. In Sect. 4 we therefore present
a computationally expensive regularization step to improve the convergence behavior for
difficult instances.

2.5 Matrix completion

We point out that Algorithm 2.1 can be used with minor modifications to (approximately)
solve the completely positive completion problem: “Given an index set I ⊂ {1, . . . , n}2 and
a symmetric matrix B ∈ IRn×n , find a matrix S ∈ C∗ such that Si, j = Bi, j for all (i, j) ∈ I.”
In this case, the equality constraints in problems (3) or (4) that correspond to index pairs not in
I are simply dropped. Unfortunately, the constraints then do not lend themselves any longer
to the application of the apd-algorithm; the inverse of AAT is not given by (8). For small size
problems, of course, interior-point algorithms could be used in place of the apd-approach.

2.6 Random examples

Algorithm 2.1 was tested for random examples with p = 2n and n = 10, 50, 200. The
unknown matrix X is of dimension n× p, and an initial matrix X = X0 ≥ 0 with X X T ≈ B
is generated as outlined in Sect. 3 below. The matrix B was generated as B = W W T where
W was chosen as a random (uniformly distributed entries in (0, 1)) matrix of dimension
n × k. For k < n it follows that B ∈ ∂C∗. We observe significantly longer solution times
for the case k < n with less accuracy in the final solution. The solution times reflect that the
subproblems to be solved with the apd method tend to require a higher number of iterations;
the number of overall (outer) iterations does not vary to such an extent.

The results of Algorithm 2.1 are given in Tables 1, 2 and 3. The running times refer to a
1.6 GZ PC (from 2003).

We also tested some examples with B �∈ C∗. Here the convergence behavior was similar
as in the case B ∈ ∂C∗; convergence slowed down at some point, but the residual was still
large. Let us denote the final matrix generated by Algorithm 2.1 by X̄ . By construction,

3 The center of the cone of semidefinite matrices is given by the minimizer of − ln det (X) subject to the
constraint that the diagonal of X consists of all ones. In the absence of knowing a self-concordant barrier
function for C∗ one might approximate the center of C∗ by the center of C+ := {X | X � 0, X ≥ 0} which
coincides with C∗ for n ≤ 4 and which has the canonical self-concordant barrier function − ln det (X) −∑

i< j ln Xi, j . Straightforward calculations show that the centers of C+ (with diagonal all ones) have off-

diagonal elements all equal to (n − 2+
√

n2 + 8)/(2n + 2). These matrices are also interior to C∗.

123

288 J Glob Optim (2009) 45:281–296

Table 1 Results of Algorithm 2.1 for n = 10

n = 10 k = n
2 k = n k = 2n

Minimal ‖B − X0(X0)T ‖F 5.51 · 10−2 4.78 · 10−2 6.03 · 10−2

Maximal ‖B − X0(X0)T ‖F 7.05 · 10−2 6.47 · 10−2 6.39 · 10−2

Minimal ‖B − Xend (Xend)T ‖F 1.72 · 10−6 1.06 · 10−12 4.36 · 10−13

Maximal ‖B − Xend (Xend)T ‖F 1.73 · 10−4 1.85 · 10−12 8.71 · 10−13

Minimal number of iterations 11 34 37

Maximal number of iterations 41 39 38

Average running time 78.8 s 5.8 s 3.4 s

Table 2 Results of Algorithm 2.1 for n = 50

n = 50 k = n
2 k = n k = 2n

Minimal ‖B − X0(X0)T ‖F 6.46 · 10−2 3.74 · 10−2 1.62 · 10−2

Maximal ‖B − X0(X0)T ‖F 7.94 · 10−2 5.02 · 10−2 2.28 · 10−2

Minimal ‖B − Xend (Xend)T ‖F 2.08 · 10−8 4.23 · 10−14 2.05 · 10−14

Maximal ‖B − Xend (Xend)T ‖F 1.19 · 10−7 7.94 · 10−14 3.43 · 10−14

Minimal number of iterations 27 41 40

Maximal number of iterations 34 44 42

Average running time 764.5 s 123.7 s 34.2 s

Table 3 Results of Algorithm 2.1 for n = 200

n = 200 k = n
2 k = n k = 2n

Minimal ‖B − X0(X0)T ‖F 1.04 · 10−1 6.74 · 10−2 2.80 · 10−2

Maximal ‖B − X0(X0)T ‖F 1.13 · 10−1 7.09 · 10−2 3.02 · 10−2

Minimal ‖B − Xend (Xend)T ‖F 1.10 · 10−10 4.05 · 10−15 2.41 · 10−15

Maximal ‖B − Xend (Xend)T ‖F 1.86 · 10−10 4.99 · 10−15 2.49 · 10−15

Minimal number of iterations 35 50 57

Maximal number of iterations 41 54 68

Average running time 27609.6 s 1595.4 s 1858.1 s

X̄ ≥ 0 and the matrix X̄ X̄ T is closer to B than X0(X0)T . While X̄ X̄ T ∈ C∗ is in some way
“close” to B, it is generally not the projection of B onto C∗.

It is somewhat surprising that the final accuracy reached for the “large scale” problems
(n = 200) is higher than for the smaller problems. This may indicate that large scale random
matrices as generated here are “easy”; the “hard” matrices (having high cp-rank?) need to be
constructed by other means.

Above examples were also tested by solving the conic subproblems with SeDuMi [14].
For n = 10 and k = 2n the running times were 35.2 s in the average, and for k = n/2 they
were 38.2 s in the average. (The time for generating the matrices that define the SeDuMi
subproblems (1.5 s) was negligible for n = 10). For n = 50 the SeDuMi-based approach

123

J Glob Optim (2009) 45:281–296 289

took about 5,290 s in the average. (Here, the time for generating the matrices that define the
SeDuMi subproblems was significant (another 3,620 s).) For n ≥ 100 SeDuMi could not be
started on this computer. Thus, for small n, SeDuMi is competitive (and in case of k = n/2
even slightly faster than the apd approach), and, as expected, for moderate values of n, the
apd-method is faster.

These examples showed another unexpected feature. The corrections �X computed by
SeDuMi solved the subproblems (3) to much higher accuracy than the corrections �X com-
puted by the apd method. On the other hand, the norm of the corrections �X generated by
the apd method was smaller. For n = 10 and k = 2n, the final accuracy achieved by Algo-
rithm 2.1 with SeDuMi was 6.2 · 10−10 compared to 6.4 · 10−13 with apd. (This indicates
that the subproblems should be formulated differently when using SeDuMi, for example
minimizing a weighted average of the norm of the residual of the equality constraints and
of ‖�X‖F .) For n = 10 and k = n/2, the final accuracy achieved by Algorithm2.1 with
SeDuMi was 5.1 · 10−8 and thus significantly better than the apd-approach. In the final
iterations the apd-method was not able to render sufficiently accurate solutions of the sub-
problems for these more difficult examples. Improvements of the apd-method are the subject
of ongoing research and will also influence the results of Algorithm 2.1.

3 Generating a starting point

3.1 The diagonal of B

Algorithm 2.1 considers the problem whether a given symmetric matrix B is in C∗. When B
has a negative eigenvalue or a negative matrix entry, then trivially B �∈ C∗. Hence, we may
assume B � 0 and B ≥ 0. If the positive semidefinite matrix B has a zero diagonal element
then the corresponding row and column of B is zero and the task of finding X ≥ 0 with
X X T = B can be reduced to a smaller dimensional problem. For the generation of a starting
point in Sect. 3.2 we therefore assume that B has strictly positive diagonal entries.

Let D be the positive definite diagonal matrix such that D−2 coincides with the diagonal of
B. Given a nonnegative factorization DB D = X̃ X̃ T , it is trivial to recover the nonnegative
factorization B = (D−1 X̃)(D−1 X̃)T . Hence when defining a starting point X0 such that
X0(X0)T ≈ B we may rescale B := DB D to have a diagonal of all ones. When B ∈ C∗
this implies that Bi, j ∈ [0, 1] for all i, j .

3.2 Criteria for the starting point

In this section a starting point X0 ∈ IRn×p, X0 ≥ 0 is defined such that S0 := X0(X0)T ≈ B
and such that S0 lies near the “center” of C∗.

The choice of X0 ≥ 0 with X0(X0)T = S0 is far from unique as for a given matrix
S = S0 ∈ C∗ of cp-rank ≤ p the set

�p(S) := {X ∈ IRn×p | X ≥ 0, X X T = S} (10)

contains more than one element (unless p = 1). As shown in [7], for any S in the interior
(C∗)◦ of C∗, there exists a representation S = X X T satisfying

X = [X1, X2], 0 < X1 ∈ IRn×n, and X1(X1)T � 0. (11)

123

290 J Glob Optim (2009) 45:281–296

On the other hand, even when S ∈ (C∗)◦ there may also exist representations X X T of S that
violate (11). For example, S = I + (n + 2)E has the representations

S = X X T = X̂ X̂ T with X = [E + I, 0] and X̂ = [I,√n + 2e].
The representation X̂ X̂ T not only violates (11), but, as will be detailed next, it is also less
suitable for the computation of corrections �X̂ :

Let us define the perturbation �S with entries �Si, j = 0 for all i, j except from �S1,2 =
�S2,1 = −1. We consider corrections �X̂ and �X such that X̂+�X̂ ≥ 0 and X+�X ≥ 0
satisfy the linearized equations

�X̂ X̂ T + X̂�X̂
T = �S and �X X T + X�X T = �S. (12)

Straightforward calculations show that the minimum norm solution �X̂ of (12) has a norm of
about

√
2n − 4. On the other hand, for any �S of norm

√
2 (including the above perturbation

�S), the minimum norm solution �X of (12) is bounded by
√

2. In this example, the zero
entries in X̂ restrict the choice of the corrections �X̂ .

As the linearization error �X�X T increases with ‖�X‖ the representation X X T appears
to be more suitable as a starting point for linearized corrections X → X + �X than the
representation X̂ X̂ T . We summarize the crucial points for determining an initial matrix X0:

• When X0 has two or more identical columns, these columns will remain identical throu-
ghout the algorithm. (This will only increase computation time.) Below we generate
nonnegative columns that have pairwise a “large angle” to each other.

• The matrix X0 below is generated such that it contains a strictly positive n× n submatrix
whose smallest singular value is “large”. By (11), this guarantees that S0 ∈ (C∗)◦.

• Of course, the algorithm is expected to profit from a “warm start”. On the other hand, when
using a warm start at the boundary of C∗, e.g. with a singular matrix S0, the algorithm
may get stuck at the first iteration. In this work we give priority to a “central” starting
point over a good initial approximation X0(X0)T ≈ B.

3.3 Two specific starting points

We consider two possible choices of p:

1. When n is large, a choice of p ≥ n2/4 may be infeasible due to limitations in storage
and computation time. In this case it may suffice to find an approximation X X T ≈ B
that improves the initial decomposition X0(X0)T ≈ B. We then choose n < p ≤ 2n
and a starting point X0 is evaluated by the following steps:
By symmetric permutations the columns of B are reordered in increasing norm, B̃ :=
�T B�. Then, a Cholesky factorization B̃ = L LT is computed (when B̃ is singular,
L has fewer than n columns). If L ≥ 0 stop (B ∈ C∗); else project L onto the set of
nonnegative matrices. Finally, the rows of L are permuted back; L := �L . Let e ∈ IRn

be the vector of all ones and ei be the i-th unit vector for 1 ≤ i ≤ n. The first n columns
of X0 are set to 1

2n e + 1√
n

ei (1 ≤ i ≤ n). The remaining p − n columns are set to the
first p − n columns of L . (Reduce p when L has fewer than p − n nonzero columns.)
Let D̂ be the diagonal of X0(X0)T . To match the diagonal of B and X0(X0)T we set
X0 := D̂−1/2 X0. (This is the approach used for the examples in Sect. 2.6.)

2. Second, p = n(n + 1)/2. This second option is feasible only for small sizes of n, say
n ≤ 50. In this case, the following procedure generates a matrix X0(X0)T in the “center”
of C∗:

123

J Glob Optim (2009) 45:281–296 291

As above, the first n columns of X0 are set to 1
2n e + 1√

n
ei (1 ≤ i ≤ n). The remaining

n(n − 1)/2 columns are set to 1
n2 e + 1

n (ei + e j) (1 ≤ i < j ≤ n). It is easy to see

that X0(X0)T = λeeT + ρ I where I is the identity matrix and λ, ρ are positive scalars.
When changing the factors 1

2n , 1√
n
, 1

n2 , 1
n to other positive values, the numbers λ, ρ will

change. X0(X0)T is in the interior of C∗ if, and only if, λ > 0 and ρ > 0. Normalizing
X0(X0)T to diagonal of all ones is simply achieved by setting X0 := 1√

λ+ρ
X0.

The above construction not only generates a “central” matrix S0 but also a “cen-
tral” X0 ∈ �(S0) supporting the goal of defining a “central” path [S0, B). If a “good”
factorization B ≈ V V T with V ∈ IRn×k+ is known, this initial point may of course be
extended to X0 ← [√λV,

√
1− λX0] for some λ ∈ (0, 1) – increasing the value p to

k + n(n + 1)/2.

Whether or not the matrix B is scaled back B := D−1 B D−1 (and likewise X0 := D−1 X0)
before starting Algorithm 2.1 in the next section depends on the norm in which we would
like to measure the distance between X X T and B.

4 A regularization step

As outlined before, when S has full rank and X is strictly positive with X X T = S the linear
Eq. 2 have a feasible solution. Given a matrix S = Sk at iteration k, this suggests to search—
among all matrices X with X X T = S—for a strictly positive matrix X before computing
the correction step (Step 3. of Algorithm 2.1). Below we present a heuristic for generating
matrices X ∈ �p(S) (see (10)) whose smallest entries are as large as possible.

Let S = Xk(Xk)T denote a certain iterate of Algorithm 2.1. The goal of this section is to
compute a “central” element X̄ of �p(S) in the sense that X̄ − ρ̄E ≥ 0 for a large value of
ρ̄. Here, E is the ‘all-ones-matrix’. (When ρ̄ > 0 and �X is given arbitrarily, this allows a
correction X̄ �→ X̄ + ε�X for some ε > 0 without violating the nonnegativity constraints.)
The regularization step can be applied after each iteration of Algorithm 2.1 replacing Xk with
a “more central” matrix X̄ k .

The following proposition is used to generate such a “central element”.

Proposition 4.1 Given S � 0 with distinct eigenvalues λi > λi+1 for 1 ≤ i ≤ n − 1 and
X, X̄ with X X T = S = X̄ X̄ T then X̄ = X V̂ for some unitary matrix V̂ .

Proof Let X = U�V and X̄ = Ū�̄V̄ be the singular value decompositions of X and X̄
where the singular values �i,i = �̄i,i = √λi are arranged in decreasing order. Comparing
X X T and X̄ X̄ T one obtains

U��T U T = Ū�̄�̄T Ū T ,

i.e. ��T = U T Ū�̄�̄T Ū T U . As ��T = �̄�̄T is a diagonal matrix with strictly decreasing
diagonal entries and U T Ū is unitary, it follows that U T Ū = I , i.e. U = Ū . Defining
V̂ := V T V̄ the claim of the proposition follows. ��
Remark 4.1 When the eigenvalues of S are not pairwise distinct there might be additional
degrees of freedom in the selection of X and X̄ . This possibility is not exploited in this paper.

Proposition 4.1 shall be used to change a given matrix X ∈ �(S) to a slightly ‘more
central’ matrix X̄ . The change will be based on a “linearization” of the matrix V̂ , so that the
equality X X T ≈ X̄ X̄ T only holds approximately.

123

292 J Glob Optim (2009) 45:281–296

By $ we always denote a skew symmetric matrix, $ = −$T . For small ‖V̂ − I‖ it follows
that there exists a skew symmetric matrix $ such that

V̂ = exp($) = I + $+ O(‖$‖2).
(This equation defines the “linearization” referred to above.) Given a matrix X ∈ �(S) we
search for a small correction of the form

X �→ X̄ := X (I + ε$) (13)

such that X̄ ≥ ρ̄E for a large value of ρ̄. To this end the matrix $ is determined by the linear
program

maximize ρ | X (I + $) ≥ ρE

which can be written in the dual form

maximize ρ | ρE − X$ ≤ X. (14)

Whenever the optimal solution to (14) has an optimal value that is larger than mini, j Xi, j an
update of the form (13) with ε ∈ (0, 1) will increase the lower bound mini, j X̄i, j —at the
expense of a second-order perturbation to X X T .

When $ is a p × p-matrix, the linear program (14) has about p2/2 unknowns and np
inequalities of a special structure. Here, p may be a rather large number (typically one would
choose p ≤ n2/2), and for p > 2n the program has more variables than inequalities. It is
easy (we omit the details) to find primal and dual feasible points for this program. Thus, the
program has a finite optimal solution but (at least for p > 2) it is highly degenerate. Again,
the linear operator defining the constraints is not given by a matrix, and the structure of this
linear program is not suitable for interior-point methods.

The solution of (14) can also be computed by the apd algorithm, and as in Sect. 2, the
accuracy of the solution of the subproblems can be adjusted according to the linearization
error and the distance of X X T to B.

4.1 Standard form of the apd-algorithm

Let the mapping A∗ be given by A∗($) = X$. A∗ maps the space of skew symmetric
p × p-matrices to IRn×p . Its adjoint is given by

A(Z) = 1

2
(X T Z − Z T X)

for Z ∈ IRn×p . With this notation, the primal of (14) is given by

minimize X • Z | E • Z = 1, A(Z) = 0, Z ≥ 0.

Note that Z0 := X/(E • X) is feasible for the primal problem.
To apply the apd-algorithm [9] to this LP we denote

L := {Z | E • Z = 0, A(Z) = 0}.
The primal problem can thus be written as

minimize X • Z | Z ∈ (L+ Z0) ∩ IRn×p
+ .

Here, the iterate X is given data (it is the goal of this LP to increase the minimum entry of
X) and Z is the dual variable.

123

J Glob Optim (2009) 45:281–296 293

We recall that the apd-algorithm is based on the availability of cheap projections onto L.
These will be discussed next. (The authors were not able to provide equally cheap solutions
for the linear systems that arise in interior-point approaches for this problem.)

The KKT conditions for the projection �Z of a matrix Z onto L can be written as follows:
There exists a ρ ∈ IR and a skew symmetric $ such that

ρE • E + E •A∗($) = E • Z

ρA(E)+A(A∗($)) = A(Z).

In the sequel the brackets as in A(E) will be omitted and we simply write AE . The pseu-
doinverse of a linear operator M is denoted by M+. With this notation, the solution of this
system can be obtained via

ρ = Z • (E −A∗(AA∗)+AE

E • (E −A∗(AA∗)+AE

$ = (AA∗)+A(Z − ρE).

Note that E is not contained in the range of A∗ and hence, ρ is well-defined. (If E was
contained in the range of A∗ the linear program (14) would be unbounded.)

We briefly discuss the least squares solution of the system AA∗$ ≈ R for some given
skew symmetric right hand side R ∈ IR p×p . (This least squares solution coincides with
$ = (AA∗)+R.)

Observe that AA∗$ = 1
2 (X T X$+ $X T X). We obtain the equation

2AA∗$ = X T X$+ $X T X ≈ 2R

for the unknown matrix $. We assume that the singular value decomposition of X is given,
X = U�V with unitary matrices U and V of suitable dimensions. Using the singular value
decomposition and setting $̃ = V $V T this is equivalent to

�T �$̃+ $̃�T � ≈ 2R̃ := 2V RV T .

The matrix $̃ is skew symmetric as well, and the above unitary transformations do not change
the least squares solution. Here, �T � is a p× p diagonal matrix, only the leading n diagonal
entries of it being nonzero (when X has maximum rank, else there are r < n nonzero entries).

Solving this system for $̃ in a least squares sense is trivial, yielding the desired solution
$ = V T $̃V .

Above computations require about O(p3) operations. Note that AA∗ maps the skew
symmetric p× p matrices into themselves; the inversion of a general map IR p×p → IR p×p

may take O(p6) operations.

4.2 Recovering the primal variable

If problem (14) is solved by the apd-method, the last step of the algorithm can be chosen as
the projection onto the affine hull of the primal dual feasible solutions. We obtain a primal
dual solution in the apd-format satisfying all equality constraints. The dual solution N is a
matrix in IRn×n such that there exist variables $ and ρ with

ρE − X$ = R := X − N .

(Ideally, when also the primal dual inequalities are satisfied then N ∈ IRn×n+ , but due to the
last projection this cannot be guaranteed.) We are then interested in the values of $ and ρ.

123

294 J Glob Optim (2009) 45:281–296

Specifically, we need to solve a system of the form

ρE −U�V $ = R

where U�V is the singular value decomposition of X . (For general R this system may not
have a solution, but by our assumption that the apd method terminates with a projection on the
primal dual feasible equations a solution must exist.) Setting Ẽ := U T EV T , $̃ := V $V T ,
and R̃ := U T RV T , this system is equivalent to

ρ Ẽ −�$̃ = R̃.

Let � = [D, 0]. By the assumption X X T ∈ (C∗)◦ it follows that X must have full rank and
thus D is an n × n positive definite diagonal matrix. We obtain

ρD−1 Ẽ − [I, 0]$̃ = D−1 R̃.

Note that $̃ is skew symmetric and thus has a zero diagonal. Hence we may determine ρ such
that D−1(R̃ − ρ Ẽ) has a zero diagonal. (In the presence of rounding errors a least squares
solution ρ may be used.) Once ρ is given, the computation of $ is straightforward.

4.3 The effect of the regularization step

For B =
(

l I E
E l I

)
the results of Algorithm 2.1 without regularization step were disappoin-

ting. As pointed out, this matrix has cp-rank n2/4. To have any chance to prove complete posi-
tivity for this choice of B we applied Algorithm 2.1 with the expensive choice p = n(n+1)/2
and starting point 2. in Sect. 3.3. The example was tested first with Algorithm 2.1 without
regularization. Due to slow convergence we stopped the algorithm after 260 iterations with
a residual of 1.56 · 10−2. For this example we also tested the regularized approach, allowing
10 regularization steps after each iteration. (Each regularization step solves a linear program
with p(p − 1)/2 variables and is thus very expensive.) After 65 iterations the regularized
approach obtained an accuracy of 4.85 · 10−5.

Since the results of Algorithm 2.1 for n = 10 and k = n/2 were disappointing as well,
we also tested the regularized approach for these examples. The corresponding results for
the regularized approach in comparison with the approach without regularization are given
in Table 4.

The approach without regularization was stopped whenever the algorithm stagnated or
the iteration number exceeded twice the iteration number of the regularized approach. The

Table 4 Results of Algorithm 2.1 with/without regularization for n = 10

n = 10 With regularization Without regularization

Minimal ‖B − X0(X0)T ‖F 5.62 · 10−2

Maximal ‖B − X0(X0)T ‖F 1.06 · 10−1

Minimal ‖B − Xend (Xend)T ‖F 4.38 · 10−8 3.44 · 10−6

Maximal ‖B − Xend (Xend)T ‖F 3.25 · 10−7 1.04 · 10−4

Minimal number of iterations 17 10

Maximal number of iterations 29 30

Average time (sec) 1, 490 79

123

J Glob Optim (2009) 45:281–296 295

algorithm with regularization performs better when the constant ε in the regularization step
is chosen in dependence of the distance of the current iterate Xk(Xk)T to B with smaller
values of ε > 0 when Xk(Xk)T is close to B.

The aim of this experiment was to test whether the regularization step really does im-
prove the overall convergence. While the improved convergence behavior of the regularized
approach is indeed encouraging, the running times leave room for improvement—with 10
regularization steps after each iteration the regularized approach took about 20 times longer.
Let

X (ε̃) := X

(
I + ε̃$+ 1

2
ε̃2$2

)
, X (ε̃) := X

(
I + ε̃$+ 1

2
ε̃2$2 + 1

6
ε̃3$3

)
,

or X (ε̃) := X exp(ε̃$).

In the first two cases the error term X (ε̃)− X exp(ε̃$) can be estimated by E(ε̃) := 1
6 ε̃3 X$3

or E(ε̃) := 1
24 ε̃4 X$4. Instead of 10 short steps of the form (13) one or two steps with a line

search along X (ε̃) minimizing some weighted average of “−mini, j X (ε̃)i, j ” and ‖E(ε̃)‖
might be sufficient. We did not explore this or other options to reduce the computation time.

5 Conclusion

In this paper, the quadratic factorization heuristic—proposed in a different context in [4]—is
used for the generation of a certificate of complete positivity of a given matrix B; or for com-
pletely positive completion problems. The algorithm generates iterates that are determined
by approximate solutions of certain subproblems. These subproblems can be reformulated
as second-order cone programs. Due to a linearization error, the exact solution of the sub-
problems does not generate the desired certificate but merely determines a step towards the
next iterate. Because of this linearization error the implementation solves the subproblems
only up to a precision of same the magnitude as the linearization error. For such approximate
solutions the apd-method [9,13] is well suited. Numerical results show a very promising
convergence behavior of the algorithm for matrices B in the interior of C∗ and of low cp-
rank. The convergence slows down significantly, when B is on the boundary of C∗ or when
B has a large cp-rank. To accelerate the algorithm for this case we propose a novel regulari-
zation step after each iteration aiming at making all matrix entries of the current factor Xk

as large as possible without changing the product Xk(Xk)T . Numerical examples illustrate
the positive effect of this regularization. It was possible to test this regularization—and to
establish its positive effect on the overall algorithm—for small size problems. Due to limits
in computation time, the application to large problems remains a topic of future research.

Acknowledgments The authors would like to thank two anonymous referees whose constructive comments
were of great help in improving the paper.

References

1. Berman, A., Rothblum, U.: A note on the computation of the CP-rank. Linear Algebra Appl. 419, 1–
7 (2006)

2. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific, Singapore (2003)
3. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive programming and

standard quadratic optimization problems. J. Glob. Optim. 18, 301–320 (2000)

123

296 J Glob Optim (2009) 45:281–296

4. Bomze, I.M., Jarre, F., Rendl, F.: A quadratic factorization heuristic for copositive programs, Preprint,
in preparation (2007)

5. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic programs.
Preprint, University of Iowa (2007), available at http://www.optimization-online.org/DB_HTML/2006/
10/1501.html

6. de Klerk, E., Pasechnik, D.V.: A linear programming reformulation of the standard quadratic optimization
problem. J. Glob. Optim. 37, 75–84 (2007)

7. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra 17, 48–53
(2008) (ISSN 1081-3810)

8. Hall, M. Jr., Newman, M.: Copositive and completely positive quadratic forms. Proc. Camb. Philos.
Soc. 59, 329–339 (1963)

9. Jarre, F., Rendl, F.: An augmented primal-dual method for linear conic programs. SIAM J. Optim. 19(2),
808–823 (2008). doi:10.1137/070687128

10. Maxfield, J.E., Minc, H.: On the matrix equation X ′X = A. Proc. Edinb. Math. Soc. 13, 125–129
(1962/1963)

11. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and linear programming. Math.
Program. 39, 117–129 (1987)

12. Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming. Society
for Industrial and Applied Mathematics, Philadelphia (1994)

13. Schmallowsky, K.: On the regularity of second order cone programs and an application to solving large
scale problems. Math. Methods Oper. Res. (2008) (to appear)

14. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11–12, 625–653 (1999)

123

http://www.optimization-online.org/DB_HTML/2006/10/1501.html
http://www.optimization-online.org/DB_HTML/2006/10/1501.html
http://dx.doi.org/10.1137/070687128

	On the computation of C* certificates
	Abstract
	1 Introduction
	1.1 The cp-rank
	1.2 Further notation
	1.3 Outline

	2 A Lyapunov type second-order cone algorithm
	2.1 Motivation
	2.2 Reformulation of the second-order cone program
	2.3 Solution of the SOC problem
	2.4 Overall algorithm
	2.5 Matrix completion
	2.6 Random examples

	3 Generating a starting point
	3.1 The diagonal of B
	3.2 Criteria for the starting point
	3.3 Two specific starting points

	4 A regularization step
	4.1 Standard form of the apd-algorithm
	4.2 Recovering the primal variable
	4.3 The effect of the regularization step

	5 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

